Bayesian Networks

CE417: Introduction to Artificial Intelligence
Sharif University of Technology
Fall 2023

Soleymani

Slides have been adopted from Klein and Abdeel, CS188, UC Berkeley.



Probabilistic Models

- Models describe how (a portion of) the world works

- Models are always simplifications
May not account for every variable
May not account for all interactions between variables

“ Al models are wrong; but some are useful.
— George E. P. Box

- What do we do with probabilistic models?

We (or our agents) need to reason about unknown variables, given
evidence

Example: explanation (diagnostic reasoning)
Example: prediction (causal reasoning)
Example: value of information




Independence

» Two variables are independent if:

Va,y : P(z,y) = P(xz)P(y)

This says that their joint distribution factors into a product two simpler
distributions

Another form:

va,y : P(zly) = P(z)

We write: X LY

» Independence is a simplifying modeling assumption

Empirical joint distributions: at best “close” to independent

What could we assume for {Weather, Traffic, Cavity, Toothache}?



Conditional Independence

» Unconditional (absolute) independence very rare (why?)

» Conditional independence is our most basic and robust form of
knowledge about uncertain environments.

» Xis conditionally independent of Y given Z X1Y | Z

if and only if:

Va,y,z 1 P(z,y|z) = P(x|z)P(y|z)
or, equivalently, if and only if

Vz,y,z : P(z|z,y) = P(=z|z)



Bayesian Nets: Big Picture




Bayesian Nets: Big Picture

- Two problems with using full joint distribution tables as
our probabilistic models:

Unless there are only a few variables, the joint is WAY too big to
represent explicitly

Hard to learn (estimate) anything empirically about more than a few z===x
variables at a time

- Bayes nets: a technique for describing complex joint
distributions (models) using simple, local distributions
(conditional probabilities)
More properly called graphical models
We describe how variables locally interact
Local interactions chain together to give global, indirect interactions @ @




Example Bayesian Net: Car Insurance

Age >(_ SocioEcon
GoodStudent

RiskAversion

VehicleYear

> MakeModel

DrivingSkill
DrivingRecord

DrivingBehavior

MedicalCost LiabilityCost PropertyCost



Example Bayesian Net: Car Won’t Start




Graphical Model Notation

- Nodes: variables (with domains)
Can be assigned (observed) or unassigned (unobserved)

- Arcs: interactions
Similar to CSP constraints
Indicate “direct influence” between variables
Formally: encode conditional independence (more later)

- For now: imagine that arrows mean direct causation (in
general, they don t!)

Toothache @



Example: Coin Flips

- N independent coin flips

O ONEINO

- No interactions between variables: absolute independence
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Example: Traffic

Variables:
R: It rains
T: There is traffic

Model 1: independence Model 2: rain causes traffic

Why is an agent using model 2 better?
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Example: Traffic Il

Let’s build a causal graphical model!

Variables

T: Traffic
R: It rains

L: Low pressure
D: Roof drips

B: Ballgame

C: Cavity
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Example: Alarm Network

“A burglar alarm, respond occasionally to minor earthquakes.
Neighbors John and Mary call you when hearing the alarm.
John nearly always calls when hearing the alarm.

Mary often misses the alarm.”

L]
=)

Variables:

iy

B: Burglary

A: Alarm goes off
M: Mary calls

J: John calls

E: Earthquake!
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Bayes’ Net Semantics
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Bayesian Networks

Importance of independence and conditional independence relationships
(to simplify representation)

Bayesian network: a graphical model to represent dependencies among
variables

compact specification of full joint distributions

easier for human to understand

Bayesian network is a directed acyclic graph
Each node shows a random variable
Each link from X to Y shows a "direct influence® of X on Y (X is a parent of Y)

For each node, a conditional probability distribution P(X;|Parents(X;)) shows
the effects of parents on the node
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Bayesian Net Semantics 1o

- A set of nodes, one per variable X
- A directed, acyclic graph

- A conditional distribution for each node

A collection of distribl,Jtions over X, one for each
combination of parents  values

CPT(conditional probability table): each row is a

distribution for child given values of its parents
Description of a noisy “causal’ process

A Bayes net = Topology (graph) + Local Conditional Probabilities
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Semantics of Bayesian Networks

The full joint distribution can be defined as the product of the local
conditional distributions (using chain rule):

n
P(Xy, ..., X,) = HP (X;| Parents(X;))
i=1

Chain rule is derived by successive application of product rule:

P(X1, ., X,)
= P(Xy, s X1 ) P(Xnl X1, oy Xy )
P(X1, s X0 2) P(Xy_ 11X 1) ooes X)) P(X | X1y ooes X 1)

n
- P(X,) 1_[ Py Xico)
L=
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Probabilities in BNs A

Why are we guaranteed that setting
mn
P(z1,22,...2n) = [] P(xs|parents(X;))
i=1

results in a proper joint distribution?

mn
Chain rule (valid for all distributions): P(z1,x>,...2n) = H P(xilx1...m;—1)
i=1

Assume conditional independences:  P(@ilz1,...2; 1) = P(z4|parents(X;))

n
- Consequence: P(z1,72,...zn) = []| P(z;|parents(X;))
i=1

Not every BN can represent every joint distribution

The topology enforces certain conditional independencies
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Example: Coin Flips

OMONEINO

P(X1) P(X3) P(Xn)
h |05 h |05 o h |05
t 0.5 t 0.5 t 0.5
P(h,h,t,h) =

Only distributions whose variables are absolutely independent can
be represented by a Bayes * net with no arcs.
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Example: Traffic

P(R)
+r 1/4 P(—I—’I“, —t) =
-r 3/4

P(T|R)
+r +t 3/4
1/4

~t

-r +t 1/2
-t 1/2
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Example: Alarm Network

21

Burglary

B P(B)
+b | 0.001
-b 1 0.999
John
calls
A J P(J|A)
+a | +j 0.9
+a | 4 0.1
-a | 4 0.05
-a -] 0.95

Mary

calls
A M | P(M]A)
+a | +m 0.7
+a | -m 0.3
-a | +m 0.01
-a [ -m 0.99

E | P(E) =ER

+e | 0.002 E@’j

e | 0.998 . ‘]
B | E | A | PA|B,E)

+b | +e | +a 0.95

+b | +e | -a 0.05

+b | -e | +a 0.94

+b | -e | -a 0.06

-b | +e | +a 0.29

b | +e | -a 0.71

-b | -e | +a 0.001

-b | -e | -a 0.999




Example: Alarm Network

B | P(B) E | P(E)

+b | 0.001 +e | 0.002

b | 0.999 e |0.998
Al 1| rula) 0 Al m |pM|A)
+a | +j 0.9 +a | +m 0.7 B E A P(AIB/E)
val 4| 01 +al|l -m| 03 tb | +e | +a 0.95
a |+ | 005 a | +m | o0.01 tb | +e | -a 0.05
a | - | o095 a | -m | 099 tb| e | +a 0.54

+b | -e | -a 0.06
-b | +e | +a 0.29
b | +e | -a 0.71
-b | -e | +a 0.001
-b | -e | -a 0.999

P(+b,—e,+a,—j,+m) =
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Example: Alarm Network

B P(B) E P(E)

+b [ 0.001 +e | 0.002

b | 0.999 e | 0.998
Al )| PrUIA) 0 Al M [Pm]|A)
+a | +j 0.9 +a [ +m 0.7 8 E A PAIB,E)
ta | -] 0.1 +ta | -m | 03 th | te | 43 0.95
-a | 4 0.05 a | +m 0.01 +b | +e | -a 0.05
a | - | o095 a | -m | 099 el

+b | -e | -a 0.06
+e | +a 0.29
te | -a 0.71
-e | +a 0.001
-e | -a 0.999

P(+b,—e,+a,—j,+m) =
P(4+b)P(—e)P(+a|l +b,—e)P(—j| + a)P(+m| + a) =
0.001 x 0.998 x 0.94 x 0.1 x 0.7

1 1 1 1
O |0 |T|T
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Example: Traffic

- Causal direction

P(R)
+r 1/4
-r | 3/4 P(T,R)
}j(jp|}%) +r + | 3/16

+r -t 1/16

+r +t 3/4
- + 1
a + T1a r t |6/16
-r -t 6/16
-r +t 1/2
-t 1/2
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Example: Reverse Traffic

- Reverse causality?

P(T)
+t | 9/16
-t 7/16

P(R|T)

+t +r 1/3 _
- +t 6/16
-r 2/3 r /
-r -t 6/16
-t +r 1/7
-r 6/7
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Causality?

- When Bayes nets reflect the true causal patterns:

Often simpler (nodes have fewer parents)
Often easier to think about
Often easier to elicit from experts

- BNs need not actually be causal

Sometimes no causal net exists over the domain (especially if variables are missing)
E.g. consider the variables Traffic and Drips
End up with arrows that reflect correlation, not causation

- What do the arrows really mean?

Topology may happen to encode causal structure
Topology really encodes conditional independence

P(zi|zy,. . .2 1) = P(xy|parents(X;))
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Constructing Bayesian Networks
. Nodes:

determine the set of variables and order them as X, ... , X,

(More compact network if causes precede effects)

. Links:
fori=1ton
1) select a minimal set of parents for X; from X, ... , X;_41 such that
P(X; | Parents(X;)) = P(X;| X4, ... Xi_1)
2) For each parent insert a link from the parent to X;
3) CPT creation based on P(X; | X4, ... Xj_1)

27



Node Ordering: Burglary example

- Suppose we choose the ordering M, J, A, B, E

. PU | M) = P(J)?

28



Node Ordering: Burglary example
- Suppose we choose the ordering M, J, A, B, E

(anycalsy
. P(J| M) = P(J)? No

. P(A|J,M) = P(4]|))?
. P(A|J,M) = P(A)?
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Node Ordering: Burglary example
- Suppose we choose the ordering M, J, A, B, E

(arycalsy
. P( | M) = P()? No =
. P(A|],M) = P(A|])? No Q)
. P(A|],M) = P(A)? No

. P(B|A,J,M) = P(B | A)?
. P(B|A,J,M) = P(B)?

30



Node Ordering: Burglary example
- Suppose we choose the ordering M, J, A, B, E

. P(J| M) = P(J)? No

. P(A|J,M) = P(4]))? No

. P(A|J,M) = P(4)? No

. P(B|A,J,M) = P(B|A)? Yes
. P(B|A,J,M) = P(B)? No

. P(E|B,A,],M) = P(E | A)?
. P(E|B,A,J,M) = P(E| A, B)?
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Node Ordering: Burglary example
- Suppose we choose the ordering M, J, A, B, E

. P(J| M) = P(J)? No

. P(A|J,M) = P(4]))? No

. P(A|J,M) = P(4)? No

. P(B|A,J,M) = P(B|A)? Yes

. P(B|A,J,M) = P(B)? No

. P(E|B,A,J,M) = P(E|A)?No

. P(E|B,A,J,M) = P(E| A B)?Yes

32



Node Ordering: Burglary example

The structure of the network and so the number of required probabilities
for different node orderings can be different

1

2 2
4
1+1+4+2+2=10 1+2+4+2+4=13 1+2+4+8+16 =31
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Size of a Bayes’ Net

How big is a joint distribution over N
Boolean variables?

2N

How big is an N-node net if nodes
have up to k parents?

O(N * 2k+1)

34

Both give you the power to calculate

P(Xq1,Xo,...Xn)

BNs: Huge space savings!
Also easier to elicit local CPTs

Also faster to answer queries (coming)




Bayes’ Nets

- So far: how a Bayes' net encodes a joint distribution

- Next: how to answer queries about that distribution
Today:
First assembled BNs using an intuitive notion of conditional independence as causality
Then saw that key property is conditional independence

Main goal: answer queries about conditional independence and influence

- After that: how to answer numerical queries (inference)
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Probabilistic Models & Bayesian Networks: Summary

Probability is the most common way to represent uncertain knowledge

Whole knowledge: joint probability distribution in probability theory
(instead of truth table for KB in two-valued logic)

Independence and conditional independence can be used to provide a
compact representation of joint probabilities

Bayesian networks: representation for conditional independence

Compact representation of joint distribution by network topology and CPTs
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Bayesian Nets

- A Bayes’ net is an efficient encoding of
a probabilistic model of a domain

- Questions we can ask:

Representation: given a BN graph, what kinds of distributions can it encode?
Inference: given a fixed BN, what is P(X | e)?

Modeling: what BN is most appropriate for a given domain?

37



Bayesian Nets

& Representation
- Conditional Independences
- Probabilistic Inference

- Learning Bayes’ Nets from Data
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Bayesian Nets: Assumptions

Assumptions we are required to make to define the
Bayes net when given the graph:

P(x;|lxy - xi_1) = P(x;|parents(X;))

Beyond above “chain rule > Bayes net” conditional
independence assumptions

Often additional conditional independences

They can be read off the graph

Important for modeling: understand assumptions made
when choosing a Bayes net graph
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Independence in a BN

Additional implied conditional independence assumptions?

40

Important question about a BN:
Are two nodes independent given certain evidence?

If yes, can prove using algebra (tedious in general)
If no, can prove with a counter example

Example:

Question: are X and Z necessarily independent?
Answer: no. Example: low pressure causes rain, which causes traffic.
X caninfluence Z, Z can influence X (via Y)
Addendum: they could be independent: how?



D-separation: Outline




D-separation: Outline

Study independence properties for triples
Analyze complex cases in terms of member triples

D-separation: a condition / algorithm for answering such queries
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Causal Chains

- This configuration is a “causal chain” Guaranteed X independent of Z? No!

* One example set of CPTs for which X is not
LA Pondhe) VS independent of Z is sufficient to show this

} ////// ‘L! independence is not guaranteed.
* Example:
/

Low pressure causes rain causes traffic,
high pressure causes no rain causes no

traffic
X: Low pressure Y: Rain Z: Traffic | -
n numbers:
P(z,y,z) = P(z)P(y|z)P(z|y) P(+y | +x)=1,P(-y|-x)=1,

P(+z]|+y)=1,P(-z|-y)=1,
P(+x)=P(-x)=0.5
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Causal Chains

This configuration is a “causal chain”

1) das
©9-@0

X: Low pressure Y: Rain Z: Traffic

5

(7

-

oy

P(x,y,z) = P(z)P(ylz)P(z|y)

Guaranteed X independent of Z given Y?

P($7 y? Z)
P(z,y)

_ P(x)P(ylz) P(z]y)
P(z)P(ylx)

= P(z]y)

Yes!

P(z|z,y) =

Evidence along the chain “blocks” the
influence



Common Cause

- This configuration is a “common cause”

Y: Project Project
Due -
due

X: Forums

busy Z: Lab full

P(z,y,z) = P(y)P(z|y)P(z|y)

45

Guaranteed X independent of Z? No!

* One example set of CPTs for which X is not
independent of Z is sufficient to show this
independence is not guaranteed.

* Example:

Project due causes both forums busy
and lab full

In numbers:

P(+x | +y)=1,P(-x|-y)=1,
P(+z|+y)=1,P(-z|-y)=1
P(+y)=P(-y)=05



Common Cause

This configuration is a “common cause” Guaranteed X and Z independent given Y?
Y: Project Project P
due Due P(z|z,y) = (z,y,2)
P(z,y)
_ P@)P(z|y) P(zly)
P(y)P(z|y)
= P(z|y)
X: Forums
busy Yes!
P(x,y,z) = P(y)P(x|y)P(z|y) Observing the cause blocks influence

between effects.
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Common Effect

- Last configuration: two causes of one Are X and Y independent?

effect (v-structures) e Yes: the ballgame and the rain cause traffic, but

o they are not correlated
X: Raining Y: Ballgame

)

e Still need to prove they must be (try it!)

Are X and Y independent given Z?

* No: seeing traffic puts the rain and the ballgame
in competition as explanation.

This is backwards from the other cases

* Observing an effect activates influence between

Z: Traffic .
possible causes.
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The General Case
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The General Case

- General question: in a given BN, are two variables independent
(given evidence)!?

- Solution: analyze the graph

- Any complex example can be broken

into repetitions of the three canonical cases @ = %
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Reachability

- Recipe: shade evidence nodes, look for paths in the

resulting graph e

- Attempt 1: if two nodes are connected by an undirected
path not blocked by a shaded node, they are conditionally 0 e
independent

- Almost works, but not quite Q 0
Where does it break?
Answer: the v-structure at T doesn’t count as a link in a path
unless “active”
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Active / Inactive Paths

- Question: Are X and Y conditionally independent
given evidence variables {Z}?
Yes, if X and Y “d-separated” by Z Active Triples Inactive Triples

Consider all (undirected) paths from Xto Y
No active paths = independence!

- A path is active if each triple is active:
Causal chain
A — B — C where B is unobserved (either direction)
Common cause
A < B — C where B is unobserved
Common effect (aka v-structure)
A — B « C where B or one of its descendents is observed

0~@-O
o0
o

- All it takes to block a path is a single inactive
segment

~d{ §
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D-Separation

- Query: Xz J_LX]’{Xkl,,an} ?

- Check all (undirected!) paths between X; and X;

If one or more active, then independence not guaranteed

X XX Xk, oo, Xk, }

Otherwise (i.e. if all paths are inactive),

then independence is guaranteed

Xi 1L X { Xk, s ooy Xk, }

@@@w %

“D

52



Example

RILB
RALB|T
R B|T’

53
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Example

LIT\T Yes
L1 B Yes
L1 B|T
L1 B|T’
LI B|T,R Yes
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Example

- Variables:
R: Raining
T:Traffic
D: Roof drips
S:I'm sad

- Questions:
T D
T1 D|R Yes

Tl D|R, S
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Structure Implications

Given a Bayes net structure, can run d-separation
algorithm to build a complete list of conditional
independences that are necessarily true of the form

X L X5 Xy ooy Xk, }

This list determines the set of probability
distributions that can be represented
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Computing All Independences

oMPUTE ALL THE
%NDEPEN DE NC ES/Y

5
50
Ac4
583
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Topology Limits Distributions

Given some graph topology G, only (xuvxuizyvuz
certain joint distributions can be encoded X1 Z|Y,X LY |ZY 1l Z]|X}

@ (X1 Z|Y}

The graph structure guarantees certain ® @
(conditional) independences

(There might be more independence)

Adding arcs increases the set of
distributions, but has several costs

Full conditioning can encode any
distribution

PP PP

£ B
& &
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Bayes Nets Representation Summary

Bayes nets compactly encode joint distributions

Guaranteed independencies of distributions can be deduced from BN
graph structure

D-separation gives precise conditional independence guarantees from
graph alone

A Bayes’ net’s joint distribution may have further (conditional)
independence that is not detectable until you inspect its specific
distribution
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