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Bayesian Networks



Probabilistic Models
• Models describe how (a portion of) the world works

• Models are always simplifications
• May not account for every variable
• May not account for all interactions between variables
• “ All models are wrong; but some are useful. ”

– George E. P. Box

• What do we do with probabilistic models?
• We (or our agents) need to reason about unknown variables, given

evidence
• Example: explanation (diagnostic reasoning)
• Example: prediction (causal reasoning)
• Example: value of information
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} Two variables are independent if:

} This says that their joint distribution factors into a product two simpler
distributions

} Another form:

} We write:

} Independence is a simplifying modeling assumption

} Empirical joint distributions: at best “close” to independent

} What could we assume for {Weather, Traffic, Cavity, Toothache}?

Independence

3



Conditional Independence
} Unconditional (absolute) independence very rare (why?)

} Conditional independence is our most basic and robust form of
knowledge about uncertain environments.

} X is conditionally independent of Y given Z

if and only if:

or, equivalently, if and only if
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Bayesian Nets: Big Picture
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Bayesian Nets: Big Picture
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• Two problems with using full joint distribution tables as
our probabilistic models:
• Unless there are only a few variables, the joint is WAY too big to

represent explicitly
• Hard to learn (estimate) anything empirically about more than a few

variables at a time

• Bayes’ nets: a technique for describing complex joint
distributions (models) using simple, local distributions
(conditional probabilities)
• More properly called graphical models
• We describe how variables locally interact
• Local interactions chain together to give global, indirect interactions



Example Bayesian Net: Car Insurance
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Example Bayesian Net: Car Won’t Start
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Graphical Model Notation

• Nodes: variables (with domains)
• Can be assigned (observed) or unassigned (unobserved)

• Arcs: interactions
• Similar to CSP constraints
• Indicate “direct influence” between variables
• Formally: encode conditional independence (more later)

• For now: imagine that arrows mean direct causation (in
general, they don’t!)
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Example: Coin Flips
• N independent coin flips

• No interactions between variables: absolute independence

X1 X2 Xn
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Example: Traffic
• Variables:

• R: It rains
• T: There is traffic

• Model 1: independence

• Why is an agent using model 2 better?

R

T

R

T

• Model 2: rain causes traffic
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• Let’s build a causal graphical model!
• Variables

• T: Traffic
• R: It rains
• L: Low pressure
• D: Roof drips
• B: Ballgame
• C: Cavity

Example: Traffic II
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Example: Alarm Network
} “A burglar alarm, respond occasionally to minor earthquakes.

} Neighbors John and Mary call you when hearing the alarm.

} John nearly always calls when hearing the alarm.

} Mary often misses the alarm.”

• Variables:
• B: Burglary
• A: Alarm goes off
• M: Mary calls
• J: John calls
• E: Earthquake!
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Bayes’Net Semantics
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Bayesian Networks
• Importance of independence and conditional independence relationships
(to simplify representation)

• Bayesian network: a graphical model to represent dependencies among
variables
• compact specification of full joint distributions

• easier for human to understand

• Bayesian network is a directed acyclic graph
• Each node shows a random variable

• Each link from 𝑋 to 𝑌 shows a "direct influence“ of 𝑋 on 𝑌 (𝑋 is a parent of 𝑌)
• For each node, a conditional probability distribution 𝐏(𝑋!|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋!)) shows
the effects of parents on the node
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Bayesian Net Semantics

• A set of nodes, one per variable X

• A directed, acyclic graph

• A conditional distribution for each node
• A collection of distributions over X, one for each

combination of parents’ values

• CPT(conditional probability table): each row is a
distribution for child given values of its parents

• Description of a noisy “causal” process

A1

X

An

A Bayes net = Topology (graph) + Local Conditional Probabilities
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• The full joint distribution can be defined as the product of the local
conditional distributions (using chain rule):

𝑃(𝑋1, … , 𝑋𝑛) = (
!"#

$

𝑃 (𝑋!| 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋!))

• Chain rule is derived by successive application of product rule:

𝑃(𝑋1, … , 𝑋𝑛)
= 𝑃(𝑋1, … , 𝑋$%& ) 𝑃(𝑋𝑛|𝑋1, … , 𝑋$%&)
= 𝑃(𝑋1, … , 𝑋$%') 𝑃(𝑋$%&|𝑋1, … , 𝑋$%') 𝑃(𝑋𝑛|𝑋1, … , 𝑋$%&)
= …

= 𝑃(𝑋&)1
!('

$
𝑃(𝑋!|𝑋1, … , 𝑋!%&)

Semantics of Bayesian Networks
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Probabilities in BNs

• Why are we guaranteed that setting

results in a proper joint distribution?

• Chain rule (valid for all distributions):

• Assume conditional independences:

à Consequence:

• Not every BN can represent every joint distribution

• The topology enforces certain conditional independencies
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Only distributions whose variables are absolutely independent can 
be represented by a Bayes’ net with no arcs.

Example: Coin Flips

h 0.5

t 0.5

h 0.5

t 0.5

h 0.5

t 0.5

X1 X2 Xn

19



Example: Traffic

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2
-t 1/2
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Example: Alarm Network

Burglary Earthq.

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95
+b +e -a 0.05

+b -e +a 0.94
+b -e -a 0.06

-b +e +a 0.29
-b +e -a 0.71

-b -e +a 0.001
-b -e -a 0.999

A J P(J|A)

+a +j 0.9
+a -j 0.1

-a +j 0.05
-a -j 0.95

A M P(M|A)

+a +m 0.7
+a -m 0.3

-a +m 0.01
-a -m 0.99
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Example: Alarm Network
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A
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Example: Alarm Network
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B E

A

MJ
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Example: Traffic
• Causal direction

R

T

+r 1/4
-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2
-t 1/2

+r +t 3/16

+r -t 1/16
-r +t 6/16

-r -t 6/16
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Example: Reverse Traffic
• Reverse causality?

T

R

+t 9/16

-t 7/16

+t +r 1/3
-r 2/3

-t +r 1/7

-r 6/7

+r +t 3/16
+r -t 1/16

-r +t 6/16
-r -t 6/16
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Causality?
• When Bayes nets reflect the true causal patterns:

• Often simpler (nodes have fewer parents)
• Often easier to think about
• Often easier to elicit from experts

• BNs need not actually be causal
• Sometimes no causal net exists over the domain (especially if variables are missing)
• E.g. consider the variables Traffic and Drips
• End up with arrows that reflect correlation, not causation

• What do the arrows really mean?
• Topology may happen to encode causal structure
• Topology really encodes conditional independence
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Constructing Bayesian Networks
I. Nodes:

determine the set of variables and order them as 𝑋1, … , 𝑋𝑛
(More compact network if causes precede effects)

II. Links:

for 𝑖 = 1 to 𝑛
1) select a minimal set of parents for 𝑋! from 𝑋1, … , 𝑋!%# such that

𝐏(𝑋! | 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋!)) = 𝐏(𝑋!| 𝑋1, … 𝑋!%#)
2) For each parent insert a link from the parent to 𝑋!
3) CPT creation based on 𝐏(𝑋! | 𝑋1, … 𝑋!%#)

27



• Suppose we choose the ordering 𝑀, 𝐽, 𝐴, 𝐵, 𝐸

• 𝐏 𝐽 𝑀) = 𝐏(𝐽)?

Node Ordering: Burglary example
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• Suppose we choose the ordering 𝑀, 𝐽, 𝐴, 𝐵, 𝐸

• 𝐏 𝐽 𝑀) = 𝐏(𝐽)? No
• 𝐏 𝐴 𝐽,𝑀 = 𝐏 𝐴 𝐽 ?
• 𝐏 𝐴 𝐽,𝑀) = 𝐏(𝐴)?

Node Ordering: Burglary example
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• Suppose we choose the ordering 𝑀, 𝐽, 𝐴, 𝐵, 𝐸

• 𝐏 𝐽 𝑀) = 𝐏(𝐽)? No
• 𝐏 𝐴 𝐽,𝑀 = 𝐏 𝐴 𝐽 ?No
• 𝐏 𝐴 𝐽,𝑀) = 𝐏(𝐴)? No
• 𝐏 𝐵 𝐴, 𝐽,𝑀) = 𝐏 𝐵 𝐴)?
• 𝐏 𝐵 𝐴, 𝐽,𝑀) = 𝐏(𝐵)?

Node Ordering: Burglary example
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• Suppose we choose the ordering 𝑀, 𝐽, 𝐴, 𝐵, 𝐸

• 𝐏 𝐽 𝑀) = 𝐏(𝐽)? No
• 𝐏 𝐴 𝐽,𝑀 = 𝐏 𝐴 𝐽 ?No
• 𝐏 𝐴 𝐽,𝑀) = 𝐏(𝐴)? No
• 𝐏 𝐵 𝐴, 𝐽,𝑀) = 𝐏 𝐵 𝐴)? Yes
• 𝐏 𝐵 𝐴, 𝐽,𝑀) = 𝐏 𝐵 ? No
• 𝐏(𝐸 | 𝐵, 𝐴 , 𝐽,𝑀) = 𝑷(𝐸 | 𝐴)?
• 𝐏(𝐸 | 𝐵, 𝐴, 𝐽,𝑀) = 𝑷(𝐸 | 𝐴, 𝐵)?

Node Ordering: Burglary example

31



• Suppose we choose the ordering 𝑀, 𝐽, 𝐴, 𝐵, 𝐸

• 𝐏 𝐽 𝑀) = 𝐏(𝐽)? No
• 𝐏 𝐴 𝐽,𝑀 = 𝐏 𝐴 𝐽 ?No
• 𝐏 𝐴 𝐽,𝑀) = 𝐏(𝐴)? No
• 𝐏 𝐵 𝐴, 𝐽,𝑀) = 𝐏 𝐵 𝐴)? Yes
• 𝐏 𝐵 𝐴, 𝐽,𝑀) = 𝐏(𝐵)? No
• 𝐏(𝐸 | 𝐵, 𝐴 , 𝐽,𝑀) = 𝑷(𝐸 | 𝐴)?No
• 𝐏(𝐸 | 𝐵, 𝐴, 𝐽,𝑀) = 𝑷(𝐸 | 𝐴, 𝐵)?Yes

Node Ordering: Burglary example
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Node Ordering: Burglary example
• The structure of the network and so the number of required probabilities
for different node orderings can be different
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1 + 2 + 4 + 2 + 4 = 131 + 1 + 4 + 2 + 2 = 10

4

2 2

1 1

1 + 2 + 4 + 8 + 16 = 31

4

4

2

2

1 1

2

4

8
16



Size of a Bayes’Net
• How big is a joint distribution over N

Boolean variables?

• 2N

• How big is an N-node net if nodes
have up to k parents?

• O(N * 2k+1)

• Both give you the power to calculate

• BNs: Huge space savings!

• Also easier to elicit local CPTs

• Also faster to answer queries (coming)
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Bayes’Nets
• So far: how a Bayes’ net encodes a joint distribution

• Next: how to answer queries about that distribution
• Today:

• First assembled BNs using an intuitive notion of conditional independence as causality
• Then saw that key property is conditional independence

• Main goal: answer queries about conditional independence and influence

• After that: how to answer numerical queries (inference)
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Probabilistic Models & Bayesian Networks: Summary

• Probability is the most common way to represent uncertain knowledge

• Whole knowledge: joint probability distribution in probability theory
(instead of truth table for KB in two-valued logic)

• Independence and conditional independence can be used to provide a
compact representation of joint probabilities

• Bayesian networks: representation for conditional independence
• Compact representation of joint distribution by network topology and CPTs
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Bayesian Nets

• A Bayes’ net is an efficient encoding of
a probabilistic model of a domain

• Questions we can ask:

• Representation: given a BN graph, what kinds of distributions can it encode?

• Inference: given a fixed BN, what is P(X | e)?

• Modeling: what BN is most appropriate for a given domain?
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Bayesian Nets

• Representation

• Conditional Independences

• Probabilistic Inference

• Learning Bayes’ Nets from Data
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Bayesian Nets: Assumptions
• Assumptions we are required to make to define the

Bayes net when given the graph:

• Beyond above “chain rule à Bayes net” conditional
independence assumptions

• Often additional conditional independences

• They can be read off the graph

• Important for modeling: understand assumptions made
when choosing a Bayes net graph

P (xi|x1 · · ·xi�1) = P (xi|parents(Xi))
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Independence in a BN

• Additional implied conditional independence assumptions?

• Important question about a BN:
• Are two nodes independent given certain evidence?
• If yes, can prove using algebra (tedious in general)
• If no, can prove with a counter example
• Example:

• Question: are X and Z necessarily independent?
• Answer: no. Example: low pressure causes rain, which causes traffic.
• X can influence Z, Z can influence X (via Y)
• Addendum: they could be independent: how?

X Y Z
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D-separation: Outline
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D-separation: Outline

• Study independence properties for triples

• Analyze complex cases in terms of member triples

• D-separation: a condition / algorithm for answering such queries

42



Causal Chains

• This configuration is a “causal chain”

X: Low pressure          Y: Rain                          Z: Traffic

• Guaranteed X independent of Z ? No!

• One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

• Example:

• Low pressure causes rain causes traffic,
high pressure causes no rain causes no 
traffic

• In numbers:

P( +y | +x ) = 1, P( -y | - x ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1,
P( +x )= P( -x ) = 0.5
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Causal Chains

• This configuration is a “causal chain” • Guaranteed X independent of Z given Y?

Evidence along the chain “blocks” the 
influence

Yes!

X: Low pressure          Y: Rain                          Z: Traffic
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Common Cause

• This configuration is a “common cause” • Guaranteed X independent of Z ?  No!

• One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

• Example:

• Project due causes both forums busy 
and lab full 

• In numbers:

P( +x | +y ) = 1, P( -x | -y ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1
P( +y )= P( -y ) = 0.5

Y: Project 
due

X: Forums 
busy Z: Lab full
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Common Cause

• This configuration is a “common cause” • Guaranteed X and Z independent given Y?

Observing the cause blocks influence 
between effects.

Yes!

Y: Project 
due

X: Forums 
busy Z: Lab full
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Common Effect

• Last configuration: two causes of one
effect (v-structures)

Z: Traffic

• Are X and Y independent?

• Yes: the ballgame and the rain cause traffic, but 
they are not correlated

• Still need to prove they must be (try it!)

• Are X and Y independent given Z?

• No: seeing traffic puts the rain and the ballgame 
in competition as explanation.

• This is backwards from the other cases

• Observing an effect activates influence between 

possible causes.

X: Raining Y: Ballgame
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The General Case
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The General Case

• General question: in a given BN, are two variables independent
(given evidence)?

• Solution: analyze the graph

• Any complex example can be broken
• into repetitions of the three canonical cases
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Reachability
• Recipe: shade evidence nodes, look for paths in the

resulting graph

• Attempt 1: if two nodes are connected by an undirected
path not blocked by a shaded node, they are conditionally
independent

• Almost works, but not quite
• Where does it break?
• Answer: the v-structure at T doesn’t count as a link in a path

unless “active”

R

T

B

D

L
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Active / Inactive Paths
• Question: Are X and Y conditionally independent

given evidence variables {Z}?
• Yes, if X and Y “d-separated” by Z
• Consider all (undirected) paths from X to Y
• No active paths = independence!

• A path is active if each triple is active:
• Causal chain

A ® B ® C where B is unobserved (either direction)
• Common cause

A ¬ B ® C where B is unobserved
• Common effect (aka v-structure)

A ® B ¬ C where B or one of its descendents is observed

• All it takes to block a path is a single inactive 
segment

Active Triples Inactive Triples
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• Query:

• Check all (undirected!) paths between and

• If one or more active, then independence not guaranteed

• Otherwise (i.e. if all paths are inactive),
then independence is guaranteed

D-Separation

Xi �� Xj |{Xk1 , ..., Xkn}

Xi �� Xj |{Xk1 , ..., Xkn}

?

Xi �� Xj |{Xk1 , ..., Xkn}
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Example

R

T

B

T’
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Example

R

T

B

D

L

T’

Yes

Yes

Yes
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Example

• Variables:
• R: Raining
• T:Traffic
• D: Roof drips
• S: I’m sad

• Questions:

T

S

D

R

Yes
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Structure Implications
• Given a Bayes net structure, can run d-separation
algorithm to build a complete list of conditional
independences that are necessarily true of the form

• This list determines the set of probability
distributions that can be represented

Xi �� Xj |{Xk1 , ..., Xkn}
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Computing All Independences

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z
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X
Y

Z

{X �� Y,X �� Z, Y �� Z,

X �� Z | Y,X �� Y | Z, Y �� Z | X}

Topology Limits Distributions
• Given some graph topology G, only

certain joint distributions can be encoded

• The graph structure guarantees certain
(conditional) independences

• (There might be more independence)

• Adding arcs increases the set of
distributions, but has several costs

• Full conditioning can encode any
distribution

X

Y

Z

X

Y

Z

X

Y

Z

{X �� Z | Y }

X

Y

Z X

Y

Z X

Y

Z

X

Y

Z X

Y

Z X

Y

Z

{}
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Bayes Nets Representation Summary
• Bayes nets compactly encode joint distributions

• Guaranteed independencies of distributions can be deduced from BN
graph structure

• D-separation gives precise conditional independence guarantees from
graph alone

• A Bayes’ net’s joint distribution may have further (conditional)
independence that is not detectable until you inspect its specific
distribution
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